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Abstract:  

The Chézy formula describes the average flow velocity in open channel turbulent flow and is 
widely used in fields related to fluid mechanics and fluid dynamics. Open channels refer to any open 

conduit, such as rivers, ditches, canals, or partially full pipes. In this context, the calculation of 

Chezy’s resistance coefficient is typically not provided a priori in a design problem, and its value is 
often selected subjectively from the literature for most open channels and conduits under uniform 

flow conditions. However, in most practical cases, if these coefficients are not expressed by implicit 

models, they are generally taken as constant and arbitrary. To this end, and in a rational manner, the 
dimensioning and design of channels require the expression of the resistance coefficient in an easily 

and explicitly defined form by adopting numerous flow parameters, namely the roughness of the 

walls, the aspect ratio, the slope of the channels, and essentially the viscosity of the liquid. To achieve 

this aim, Chezy’s resistance coefficient � is identified using the rough model method (RMM), which 

provides the discharge under uniform flow conditions appropriate to a parabolic-shaped channel.Some 

examples are presented showing how to calculate Chezy's resistance coefficient with a minimum 
practical data. 
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1   Introduction 

As early as 1769, the French engineer Antoine Chezy [1], ran extensive tests on an earthen canal 

and the Seine River. He reasoned that the resistance would vary with the wetted perimeter and with 

the square of velocity, and the force to balance this resistance would vary with the area of cross 
section and with the slope, and concluded that: � � �����	                                                                                                                                          (1) 

Where � is the mean velocity 
m s⁄ �, � is the Chezy’s resistance coefficient �m�/� s⁄ � varies from 

about 30 m�/� s⁄  for small rough channels to 90 m�/� s⁄  for large smooth channels, �� is the 

hydraulic radius 
m� and �	 is the bed slope of the channel. Eq. (1) is a semi-empirical resistance 

equation [2], which estimates mean flow velocity in open channel conduits. The approximate 

character of Chezy's equation for uniform flow in an open channel is widely acknowledged, as can be 

seen from the numerous formulae for the Chezy coefficient quoted in the literature [3, 4, 5]  . The 

formula 
1� had been proven to work also for non-uniform gradually varied flow (GVF) after 
replacing the bed slope by the energy slope. Both uniform and GVF Chezy forms could be re-written 

in velocity form instead of slope form Elgamal and Steffler [6].  

In the literature [4, 7, 8] , the great deal of hydraulic researchers correlated the Chezy coefficient � with roughness, shape, and slope of various of open channel flow. Among them were Guanguillet 

and Kutter [9]; Manning [10]; Bazin [11]; Powell [12]. These relationships are well summarized and 

discussed by Chow [4]). 

The Guanguillet and Kutter [9] formula expresses C in terms of the hydraulic radius ��, the 

coefficient of roughness n known as Kutter’s n and the slope	�. In S.I. Units, this formula is: 
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� � 23 � 0.00155�	 � 1�
1 � �23 � 0.00155�	 � ����

																																																																																																																										
2� 
The French hydraulician Bazin [11]  proposed a formula according to which Chezy's � is 

considered a function of �� but not of �	. Expressed in S.I. Units, this formula is: 

� � 87
1 � !"���

																																																																																																																																																									
3� 
Where !" is a coefficient of roughness whose values proposed by Bazin are given by a table as a 

function of the type of the material forming the channel or the conduit. 

After Chezy's formula became generally known, there was a lot of interest in developing 

formulas to predict the value of �. The most enduring of the resulting empirical prediction formulas is 

usually attributed, wrongly according to Henderson [7], to Robert Manning. After some modification,  

Manning's formula Manning [10]  became: 

� � 1� ���/#																																																																																																																																																												
4� 
Where n is the Manning’s roughness coefficient. This coefficient is essentially a function of the nature 

of boundary surface. Note that these relationships 
2�, 
3� and 
4� do not contain a kinematic 
viscosity parameter. They therefore do not apply to the entire domain of turbulent flow. 

Powell [12]  suggested a logarithmic formula for the roughness of artificial channels. This 

formula, an implicit function of C, in S.I. Units, this formula is: 

� � %42&'( ) *�� � ��+,																																																																																																																																							 
5� 
According to this relationship (5), � depends especially on the Reynolds number �+(defined as �+ � 4��� -�⁄ , in which - is the kinematic viscosity coefficient. In this relation, there is no term that 

expresses the influence of the slope �	 on the coefficient �. Its application seems to be suitable for the 

entire domain of turbulent flow. It is interesting to note that Powell formula contains the absolute 

roughness * which is a measurable parameter in practice. The calculation of the coefficient � by 

Powell’s relation requires an iterative process. 

Another expression developed for use in pipes is sometimes used in open channels [13,14]. This 

is the Darcy-Weisbach equation which can be written for open channels [15,16] as 

� � �8(. ��/� 				or					. � 8(�� 																																																																																																																														
6� 
Where . is the Darcy-Weisbach friction factor. For smooth pipes, . is found to be a function of the 

Reynolds number �+ only. For rough turbulent flows, . is a function of the relative roughness 
* 4��⁄ � and type of roughness and is independent of the Reynolds number. In the transition regime, 

both the Reynolds number and relative roughness play important roles. This flow resistance equation 
6� is also assuming steady uniform flow. Steady uniform flow is a flow in open channel where the 

depth of flow does not change, or the flow can be assumed to be constant during the time interval 

under consideration [17] . In general, uniform flow can occur only in very long, straight, and 

prismatic channels. Although the definition of uniform flow and the assumptions required to consider 

equations (2) and (6) are rarely satisfied in practice, the concept of uniform flow is central to the 
understanding and solution to many practical tasks of open-channel hydraulics [4,15,16]. Recently, 

Swamee and Rathie [18]  have attempted to propose a general relationship for Chezy’s coefficient �, 
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applicable in the entire domain of turbulent flow and for all shapes of channels and conduits. This 
formula is: 

� � %2.457&� 2
* ��⁄ �12 � 0.221-���(�	��3																																																																																																										
7� 
The formula 
7� is implicit, requiring also a trial-and-error procedure especially when the linear 

dimension of the channel or conduit is not given, or when it comes to compute the normal depth of the 
flow. Apart from its implicit form, this relationship has the advantage of being very complete. All the 

flow parameters are included in this relationship. 

Several other studies have been carried out by researchers to define the Chezy coefficient. 

However, their uses remain very restricted. They include Pyle et al. [19], Naot and Novak [20], Ead et 

al. [21] and Giustolisi [22], etc. With this in mind, and with the aim of avoiding these shortcomings, 

this work contributes to the development of an expression for calculating the Chezy coefficient � to 

make it more manageable and easier to use. Based on the rough model method (RMM) Achour and 
Bedjaoui [23] for expressing the discharge in turbulent flow and is valid in all geometric profiles [24-

28]. For this reason, this article proposes to establish a general relationship for the explicit calculation 

of the Chezy coefficient in a parabolic channel, taking into account the required hydraulic parameters, 
namely, the aspect ratio of the normal water area, the longitudinal bed slope, the absolute roughness 

of the inner walls of the channel, and the kinematic viscosity of the fluid. This relationship is valid for 

all cases of turbulent flow in a parabolic-shaped channel (see Fig.1).  

We chose the parabolic-shaped channel profile because it is generally used in free-surface flows 

for evacuating rainwater and draining sewage from cities, as well as for transporting supplies and 
irrigation water. The parabolic cross-section shape is, in many situations, the best practical shape for 

an open channel. One of its advantages is the ability to maintain a higher velocity at low discharge, 

which reduces the tendency to deposit sediment. Parabolic channels provide good water flow 

conditions, especially in cold areas, and have the advantages of antifreeze and expansion, so they are 

widely used in agricultural drainage and irrigation, urban water supply and drainage and other 

projects Zhao et al. [29]. Furthermore, Mironenko et al. [30] and Chahar [31]  stated that since river 
beds, unlined channels, and irrigation furrows all tend to approximate a stable parabolic shape, 

unlined channels are made more hydraulically stable when they are initially constructed in a parabolic 

shape. The parabolic-shaped section it has been classified into the group of curved sections. 

2   Method 

Conducting research in natural field conditions, determining the parabolic parameter in canals 

with a parabolic cross-section is one of the important issues in the fields of hydraulics and engineering 

hydrology. 

2.1     Geometric and Hydraulic Properties of Parabolic Section 

The parabolic channel section is displayed in Fig.1, is typically characterized as:  4 � 56�																																																																																																																																																																		
8� 
Where, 4 = ordinate; 6 = abscissa and 5 is the shape factor of the parabolic channel. The top width 7, 

water area 8 and wetted perimeter 9 are given in terms of the maximum channel depth and maximum 

permissible side slope 1 :⁄ . 
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Figure 1: Schematic representation of normal depth in parabolic shaped-channel 

 

According to  [32], the channel considered is defined by the linear dimensions 7;, 4; and <=. 

Flowing under a bed slope �	  at a flow rate > of a liquid with kinematic viscosity ν. The condition of 

the channel's internal wall is described by the absolute roughness *. 

For 6 ? 0, where 6 is the longitudinal coordinate. Three points are particularly considered namely: 

The first point 9
7; 2	, <;⁄ � which is well defined by the geometrical elements 7; and 4;of the 

parabolic channel. For this point, Eq. (8) gives:  4; � 5
7; 2⁄ �� or: 

5 � 44;7;� 																																																																																																																																																																	
9� 
Inserting Eq. (9) into Eq. (8), results in: 

4 � 4B 6�																																																																																																																																																															
10� 
in which: 

B � 7;�4; 																																																																																																																																																																		
11� 
The parameter B is thus a linear dimension and it is well defined by the geometric elements 7; and 4;. 

The second point C
7= 2	, <=⁄ � which is connected to the  uniform flow characterized by the top 

width 7= and the normal depth <=. For this point, Eq. (8) gives: 

B � 7=�<= 																																																																																																																																																																		
12� 
where the subscript "�" indicates the uniform flow conditions. 

The third point D
7E 2	, <E⁄ � which translate the fact that the top width 7E is equal to the depth <E. This special case is one and only for a given parabola. For a slender parabola the point D is 

located below the point 9 whereas for a widened or a much more opened parabola, the point D is 

located above the point 9. 

2.1.1   Characteristics of Uniform Flow in Parabolic Section 

The uniform flow in parabolic channel (see Fig. 1) is characterized by: 

1. The area of the wetted section 8=
m�� of the channel is written: 
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8= � 2 F<= 7=2 %G 4H6IJ �K
E L � 	237=<=																																																																																																									
13� 

2. The wetted perimeter 9= (m) is obtained by integrating length HM, of the parabola given by 

9= � GHM ��
H6�� � 
H4�� � 

9= � 7=2 FN1 � �4<=7= �� � 74<= &� O4<=7= �N1 � �4<=7= ��PL																																																																						
14� 
3. The top width at water level  

7= � 4<=:																																																																																																																																																													
15� 
4. Assume λ= as the aspect ratio of the normal water area, defined by:  λ= � <= 7=⁄ 																																																																																																																																																										
16� 
With the aid of Eqs. (12) and (16),  λ= can be expressed as, 

λ= � �<= B⁄ 																																																																																																																																																								
17� 
From Eq. (17), the normal depth <= is thus: 

<= � Bλ=� 																																																																																																																																																															
18� 
Keeping these geometric considerations in mind, Eqs. (13)-(14) and (15) can be rewritten respectively 

as: 

9= � B8 R4λ=S1 � 16λ=� � &�24λ= � S1 � 16λ=�3T																																																																																
19�; 
8= � 23B�λ=V 																																																																																																																																																									
20� 
and 

7= � Bλ=																																																																																																																																																															
21� 
The hydraulic radius ��,= � 8= 9=⁄  is then: 

�� � BW
λ=�																																																																																																																																																								
22� 
Eq. (22) gives the hydraulic radius ��,= as a function of the aspect ratio λ= and the parameter B 

where: 

W
λ=� � 163 λ=V4λ=�1 � 16λ=� � &� X4λ= ��1 � 16λ=�Y																																																																													
23� 
2.2.      Chezy’s Resistance Coefficient 
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2.2.1 General Expression 

For uniform flow the Chezy’s relation gives the discharge > as: 

 > � �8=S��,=�																																																																																																																																																		
24� 
 

The aim of this work is to express the resistance coefficient of Eq. (24) using the RMM. The 

coefficient �, in addition to depending on the aspect ratio λ=, also depends on other hydraulic 

parameters, such as the flow discharge >, the longitudinal bed slope �	, the absolute roughness * of 

the internal wall of the channel, and the kinematic viscosity ν of the liquid. To do this, relationship 

(25) can be used to give the resistance coefficient �, established by [23] for turbulent flow for all 

geometric profiles of pipes and channels: 

> � %4�2(8=S��,=�	&'( 2�* 4��,=⁄ �3.71 � 10.04�+ 3																																																																																				
25� 
Where �+ is the Reynolds number, which may be defined by: 

�+ � 32√2S(�	��,=V- 																																																																																																																																								
26� 
By Eqs. (24) and (25), � can be given as 

� � %4�2(&'( 2�* 4��,=⁄ �3.71 � 10.04�+ 3																																																																																																								
27� 
It would appear from the Eq. (27) that � depends on  *, ��,=, and �+, which moreover to Eq. (26) 

depends on hydraulic radius ��,=, the bed slope �	, and the kinematic viscosity -. In dimensionless 

terms, Eq. (27) becomes 

��( � %4√2&'( 2�* 4��,=⁄ �3.71 � 10.04�+ 3																																																																																																								
28� 
Eq. (28) are applicable for all values of �+ [ 2300 and for the wide range: 0 \ * ��,=⁄ \ 0.2. 

Inserting Eq. (22) into Eq. (26) results in: 

�+ � 32√2]W
λ=�^V/�S(�	BV
- 																																																																																																																							
29� 

Equation (26) can be rewritten as follows: 

�+ � �+∗]W
λ=�^V/�																																																																																																																																													
30� 
Where �+∗ is a modified Reynolds number and is written by: 

�+∗ � 32√2S(�	BV
- 																																																																																																																																											
31� 

According to Eqs. (22)-(30), the relation (28) can be rewritten as follows: 
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��( � %4√2&'(O * B⁄14.8W
λ=� � 10.04
�+∗]W
λ=�^V�P																																																																																													 
32� 

It thus appears that � depends on the relative roughness * B⁄ , the aspect ratio λ= and the Reynolds 

number �+∗. When these parameters are given, relation (32) allows the explicit determination of the 

coefficient �. However, when it comes to design the channel, B is not a given data and only	>, λ=, �	, * and -are the known parameters. In this case, Eq. (32) does not allow determining explicitly the 

coefficient �. However, this problem can be solved using the rough model method (RMM). 

2.2.2 Calculation of Chezy’s Resistance Coefficient Using the Rough Model Method (RMM) 

All geometric and hydraulic characteristics of the rough model are distinguished by the symbol "	"aaa. Figure. 1 compares the geometric and hydraulic characteristics of the current channel with those 

of its rough model [33]. The rough model is particularly characterized by *̅ c�aaaa⁄ � 0.037 as the 

arbitrarily assigned relative roughness value, where c�aaaa is the hydraulic diameter. The chosen relative 
roughness value is so large that the prevailed flow regime is fully rough. Thus, the friction factor is .̅ � 1 16⁄  according to Eq. (7) for �+ � �+aaa tending to infinitely large value. Then, the Chezy’s 

resistance coefficient �̅ can be written as: 

�̅ 	� N8(.̅ � 8√2�( 	� constant																																																																																																																		
33� 
In this study there are two cases to calculate the Chezy’s resistance coefficient according to the 

available data: 

2.2.2.1   The Aspect Ratio h= of the Water Area is known 

In the rough model, the channel is distinct by the dimension Baof the cross-section, the discharge >a, a longitudinal slope �	i , liquid kinematic viscosity -̅ and a aspect ratio λ=aaa. Hence our model is 

governed by the following conditions: Ba j B; >a � >; �	i � �	; λ=aaa � λ= and -̅ � -. 

Using Eqs. (20) and (22) at a uniform flow, Eq. (24) becomes:  

> � 23h=VW
λ=��/�S��Bk�																																																																																																																															
34� 
We put; 

>∗ � 23h=VW
λ=��/�																																																																																																																																													
35� 
so that 

>∗ � >
S��Bk�	 																																																																																																																																																				
36� 

In accordance with formula (36), the relative conductivity of the rough model is defined by 

>a∗ � >
S�̅�Bak�	 																																																																																																																																																				
37� 
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By applying formula (33), Eq. (37) becomes: 

>a∗ � >
S128(Bak�	 																																																																																																																																															 
38� 

By equalization of Eqs. (35) and (38) we get 

>
S128(Bak�	 �

23h=VW
λ=��/�																																																																																																																												
39� 
As a result, we obtain: 

Ba � 2 3>16�2(�	3
E.l λ=m�.�W
λ=�mE.�																																																																																																														
40� 

Eq. (40) permits a direct determination of the parameter Ba , since	>, �	, λ= and ( are the known 

parameters of theproblem. Thus, all relationships are established for the explicit determination of the 

Chezy’s coefficient �.    

Further, using Eq. (29), the Reynolds number characterizing the flow in the rough model is: 

�+aaa � 32√2]W
λ=�^V/�S(�	BaV- 																																																																																																																							
41� 
�+aaa � �+∗aaa]W
λ=�^V/�																																																																																																																																													
42� 
And  

�+∗aaa � 32√2S(�	BaV- 																																																																																																																																											
43� 
According to the RMM [23], Chezy’s coefficient � is related to the non-dimensional corrector 

factor of linear dimension n by the following simple equation: 

� � �̅nk/� 																																																																																																																																																														
44� 
such as 0 o n o 1. The non-dimensional correction factor of linear dimension n is related to the 

hydraulic characteristics of the rough model by the following relationship  [23,34]: 

n � 1.35 R%&'( 2* ��,=aaaaaa⁄19 � 8.5�+aaa3T
m�/k 																																																																																																										
45� 

Where ��,=aaaaaa and �+aaa are respectively the hydraulic radius and the Reynolds number in the rough 

model.  

Inserting Eqs. (22) and (42) into Eq. (45), leads to: 
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n � 1.35 R%&'( 2 * Ba⁄19W
λ� � 8.5�+∗aaa]W
λ=�^V/�3T
m�/k 																																																																																						
46� 

From Eqs. (44)-(33) and (46), one can write: 

� � %5.343�(&'(O * Ba⁄19W
λ� � 8.5
�+∗aaa]W
λ=�^V�P																																																																																													
47� 

In dimensionless form, Eq. (39) can be rewritten as follows: 

��( � %5.343&'( 2 * Ba⁄19W
λ=� � 8.5�+∗aaa]W
λ=�^V/�3																																																																																											
48� 
Eq. (48) will be used when the parameter B of  the channel is not a given data of the problem. 

The coefficient � is explicitly calculated provided the discharge >, the slope �	, the absolute 

roughness * and the aspect ratio λ= are given. 

To design the current channel, it is sufficient to calculate the linear dimension B using the 

following relationship, which applies to the entire turbulent flow field: 

B � nBa																																																																																																																																																																		
49� 
2.2.2.1.1 Practical Example 1 

For the following data, compute Chezy’s resistance coefficient in parabolic channel using the 

rough model method (RMM): > � 0.915	mV s⁄ 	; 	�	 � 4 p 10ml	; 	* � 10ml	m	;	λ= � 0.8	and	- � 10m#m� s⁄ . 
Solution  

1.      For λ= � 0.8 , Eq. (23) can give W
λ=�:   W
λ= � 0.8� � 0.21657831 

2.      In accordance with the relationship (40), the parameter Ba  of the rough model is: 

Ba � 2 3>16�2(�	3
E.l λ=m�.�W
λ=�mE.� � � 3 p 0.91516√2 p 9.81 p 4 p 10ml�

E.l 0.8m�.� p 0.21657831mE.� 

Ba � 1.768862828	r 

3. Applying Eq. (43), the Reynolds number �+∗aaa is then : 

�+∗aaa � 32√2S(�	BaV- � 32√2√9.81 p 4 p 10ml p 1.768862828V10m#  �+∗aaa � 6669153.428 

4. Finally, according to Eq. (47), the Chezy’s resistance coefficient � is: 

� � %5.343�(&'(O * Ba⁄19W
λ� � 8.5
�+∗aaa]W
λ=�^V�P 

� � %5.343√9.81&'( s10ml 1.768862828⁄19 p 0.21657831 � 8.5
6669153.428 p 0.21657831V�t 

� � 76.623mE.k s⁄  
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2.2.2.2   The Aspect Ratio h= of The Water Area is unknown 

When the parameter λ= is unknown, the following study shows a simplified technique for 

calculating Chezy’s resistance coefficient, using the following parameters: the discharge >, the 

parameter B, the bed slope �	, the absolute roughness *, and the kinematic viscosity -. In practice, it is 

simple to measure each of these factors. In comparison to the strategy outlined in section 2.2.2.1, this 

simpler approach, which is likewise predicated on the theory of the rough model, results in a 

maximum relative deviation of roughly 1.25%  [23,34]. In actuality, the relative inaccuracy used to 

measure absolute roughness is more than this relative deviation. Assuming λ= j λ=aaa and applying Eq. 

(39) for the rough model leads to writing the following relationship: 

>∗ � λ=aaal.k
N4λ=aaaS1 � 16λ=aaa� � &� 24λ=aaa � S1 � 16λ=aaa�3

																																																																																
50� 

Where >∗ the relative conductivity is expressed as follows, according to Eq. (38): 

>∗ � 3√3>
8S128(Bk�	 																																																																																																																																												
51� 

All the parameters of Eq. (51) are known, which allows determining the value of the relative 

conductivity >∗. What is needed is the computation of the aspect ratio λ=aaa using equation (50) for the 

given value of >∗.  
The aspect ratio λ=aaa
>∗� of the implicit relation (50) can be reasonably written as the following power 

law  [24]: 

λ=aaa � u>∗v																																																																																																																																																												
52� 
Table 1: Values of α and	γ for computation of the aspect ratio λyaaa by Eq. (52) z∗ {|aaa } ~ Maximum deviation % >∗ \ 0.00261 λ=aaa \ 0.30 1.366 0.255 0.26 0.00261 \ >∗ \ 0.0182 0.30 \ λ=aaa \ 0.50 1.441 0.264 0.15 0.0182 \ >∗ \ 0.232 0.50 \ λ=aaa \ 1 1.487 0.272 0.26 0.232 \ >∗ \ 69.5 1 \ λ=aaa \ 5 1.507 0.282 0.32 

 

The computation of the aspect ratio λ=aaa by Eq. (52) allows the calculation of the Chezy coefficient 

according to the following steps: 

1.        Compute the non-dimensional correction factor of linear dimension n�λ=aaa� by applying the 

explicit Eq. (45); 

2. According to equation (33) with Eq. (44), the required value of the Chezy’s coefficient is: 

� � 8�2(nk/� 																																																																																																																																																												
53� 
3. Assign to the rough model the new linear dimension B � Ba/n according to Eq. (49) and 

derive the corresponding value of the relative conductivity >∗ using Eq. (51). 

 

2.2.2.2.1 Practical Example 2 

Computation the Chezy’s resistance coefficient from the following data: > � 8.0	mV s⁄ 	; 		�	 � 10mV	; 	7; � 6	m	;	4; � 3	m; and - � 10m#m� s⁄ ; 	*	 → 0.00	 
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Solution  

1.      The linear dimension B is: B � 7;� 4;⁄ � 6� 4⁄ � 12.0	r 
 

2.      Applying Eq. (51), the relative conductivity >∗ is then: 

>∗ � 3√3>
8S128(Bk�	 �

3√3 p 88√128 p 9.81 p 12k p 10mV 	� 0.009295853 

2. According to Eq. (52) and Table 1, the aspect ratio λ=aaa in the rough model is: 

λ=aaa � 	1.441 p 0.009295853E.�#l � 0.419075575 

3. The hydraulic radius and Reynolds number are easily calculated in the rough model using Eqs. 

(22) and (41) respectively as follows: 

��,=aaaaaa�λ=aaa � 0.419075575� � BW�λ=aaa� � 16B3 ��
��
� λ=aaaV
4λ=aaaS1 � 16λ=aaa� � &� 24λ=aaa � S1 � 16λ=aaa�3��

��
�
 

��,=aaaaaa � 1.032810841	r; 
4. Using Eq. (45), the non-dimensional correction factor of linear dimension n was easily 

calculated as: 

n � 1.35 R%&'( 2* ��,=aaaaaa⁄19 � 8.5�+aaa3T
m�k � 0.67092637 

 

5. According to the rough model method, the Chézy’s resistance coefficient � is related to n by 

the Eq. 
53� formula: 

� � 8�2(nk/� � 8√2 p 9.810.67092637k/� � 96.106405	rE.k M⁄  

The value of the Chezy’s resistance coefficient appears to be high, which is due to the presence 

of flow in the smooth turbulent region. 

6. To determine the aspect ratio λ= of the current channel, follow these steps: 

7.1.   According Eq.(49) assign to the rough model the following new value of linear dimension and 

derive the corresponding value of the relative conductivity >∗ using Eq. (51): Ba � B n⁄ � 120.67092637 � 17.88571822	r 

And; 

>∗ � 3√3>
8S128(Bak�	 �

3√3 p 88√128 p 9.81 p 17.88571822k p 10mV � 0.003427491 

6.2. Introducing this value of >∗into Eq. (52), we obtain the aspect ration λ=aaa in the rough model 

equal to the aspect ration λ= in the current channel as: 

λ=aaa � λ= � 1.441 p 0.003427491E.�#l � 0.322031036 

7. This step aims to verify the validity of the calculations by determining the discharge > using 

Chezy’s equation. The discharge so calculated should be equal to the discharge given in the 

problem statement. Therefore, the wetted cross-sectional area using Eq. (20) and the hydraulic 

diameter must be calculated using Eq. (22): 



           

VOLUME 19, ISSUE 09, 2025                       https://www.lgjdxcn.asia/                                           01-19 

8= � 23B�λ=V � 23 p 12� p 0.322031036V � 3.20600666	r� 

And; 

��
λ= � 0.322031036� � BW
λ=� � B 163 O λ=V4λ=�1 � 16λ=� � &� X4λ= � �1 � 16λ=�YP 

��
λ= � 0.322031036� � 0.6738637	r 

Chezy’s equation expresses the discharge > as: > � �8=S��,=�	 � 96.106405 p 3.20600666�0.6738637 p 10mV � 7.998394	rV M⁄  

The discharge so calculated and that given in the problem statement are almost equal. The deviation 

between both is about 0.02% only, which clearly indicates the validity of the calculations. 

3. Variation of Chezy’s resistance Coefficient  

3.1.    General Relationship 

According to Eq. (32), the Chezy’s resistance coefficient� depends on three dimensionless 

variables namely, the relative roughness * B⁄ , the filling rate λ= of the parabolic channel and the 

Reynolds number �+∗. Its graphical representation is not easy, but it can be shown, as an indication, its 

variation for a fixed value of the relative roughness * B⁄ . This has been performed for different values 

of * B⁄  and for Reynolds number �+∗  varying between 10l and 10�. 

Among all the obtained graphs, those of Figs. 2 and 3, are representative. Fig. 2 translates the 

variation of � �(⁄  versus the filling rate λ= and the Reynolds number �+∗, for the value * B⁄ corresponding to a smooth inner wall of the channel. Fig. 3 shows the variation of � �(⁄   

Reynolds number �+∗, for * B⁄ � 0.05 corresponding to a state of the rough inner wall of the channel. 

 
Figure 2:  Variation of � �(⁄  versus λ= and �+∗ according to Eq. (32), for * B⁄ � 0.00 
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Figure 3: Variation of � �(⁄  versus λ= and �+∗ according to Eq. (32), for * B⁄ � 0.05 

 

For all curves, it is clear that when 0 o λ= \ 1, the value of � �(⁄  increases rapidly, which is a 

characteristic for opened parabola, while when λ= ? 1 the value of � �(⁄  undergoes a very slow 

change in a wide range of  λ= independently of the value of the Reynolds number �+∗, which is a 
characteristic for a slender parabola. This indicates that the channel shape also has a very large 

influence on the value of the Chezy coefficient. This important observation helps us design the 

channel under greatly improved flow conditions, when the aspect ratio λ= is confined between zero 
and one. 

When the roughness is zero (* B⁄ � 0.00), the  � �(⁄  reaches higher values than those in case where 

the relative roughness is high. In this case, the dimensionless Chezy’s resistance coefficient � �(⁄  is 

calculated according to the following relation: 

��( � %4√2&'(O 10.04
�+∗]W
λ=�^V�P																																																																																																																						
54� 

The relationship (54) shows that the rough model method is also applicable in the turbulent smooth 

regime. It also indicates that for the high chosen roughness value (* B⁄ � 0.05), the variation curves 

of � �(⁄  versus λ= (see Fig. 3) are very close to each other and merge for the values �+∗ ? 10k. 

This highlights the rough state of the flow, where � �(⁄  is almost independent of the Reynolds 

number �+∗ and depends solely on the value of the aspect ratio λ= and the  relative roughness * B⁄  of 

the channel. This case is governed by Eq. (29), writing that �+∗ ⟶ �∞. Hence: 

��( � %4√2&'( 2 * B⁄14.8W
λ=�3																																																																																																																								
55� 
ln order to obtain a minimum section and a uniform transverse resistance of the parabolic-shaped 

channel, the study conducted by Ohara and Yamatani [35]  and Yang et al. [36]  have demonstrated 

that the aspect ratio λ= must be included in the interval ]0;1] to improve the hydraulic performance 

and the swelling resistance of a parabolic-shaped channel. For the ultimate limit state where  λ= � 1, 

the explicit nature of relation (32) is obvious. The dimensionless Chezy’s coefficient � �(⁄  can 

indeed be directly calculated from the known values of * B⁄  and �+∗ as follows: 

��( � %4√2&'(�0.2355
* B⁄ � � 65.3212�+∗m��																																																																																							
56� 
Eq. (56) was established for the following approximate explicit solutions, depending on the relative 

roughness rang, according to relation (22), we have: 0.00 \ * B⁄ \ 0.0574, and �+∗ ? 10l. 
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The study of Chey’s resistance coefficient, based on the relationship (56), can reveal many 
details through the establishment of curves showing the variation of this coefficient as a function of 

relative roughness and Reynolds number. For the entire flow domain is in turbulent regime, this 

formula is satisfactory in practice and used as a best explicit approximation to evaluate �/�( in terms 

of * B⁄  and �+∗. It can be graphically represented in the semi-logarithmic division coordinate axis 

system in the Fig. 4 below. 

 
Figure 4: Variation of � �(⁄  versus 
* B⁄ � according to Eq. (56) for various values of �+∗ 

 

The diagram in the Fig. 4 shows that for a fixed value of the relative roughness * B⁄ , the 

dimensionless Chezy’s coefficient � �(⁄  increases with the increase of the modified Reynolds 

number �+∗. The obtained curves become more and more superimposed for high values of relative 

roughness * B⁄ . The obtained curves become closely overlapping for high values of relative roughness 

and are accompanied by an apparent decrease in the values of � �(⁄ . Fig. 4 clearly shows the 

behaviour of flow resistance, expressed by the Chezy’s coefficient in open channels, as a function of 

surface roughness with changes in the Reynolds number, which in turn includes the channel slope and 

the viscosity of the flowing fluid. On the other hand, the diagram in the Fig. 5 shows that for a fixed 

value of the relative roughness * B⁄ , the dimensionless Chezy’s coefficient � �(⁄  increases with the 

increase of the modified Reynolds number �+∗. The obtained curves become increasingly quasi-

horizontal for high values of the relative roughness * B⁄ . Fig. 5 shows that dimensionless Chezy’s 

coefficient � �(⁄  in the transition regime is lower than that of the rough flow, regardless of the value 

of the modified Reynolds number �+∗. 
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Figure 5: Variation of � �(⁄  versus R�∗  according to Eq. (56) for various values of 
* B⁄ �, 

(             ) limit curve separating the transition zone to the rough zone. 

 

The plot of the diagram in Fig. 5 reveals, as in the case of the Moody diagram, the existence of 

three distinct zones. The first zone is reduced to a single curve (red dashed curve) corresponding to 
* B⁄ � � 0.00. This is the flow in the smooth regime for which the variation � �(⁄ 
�+∗� corresponds 

to the relationship: 

��( � %4√2&'(�65.3212�+∗m��																																																																																																																					
57� 
The relationship (57) is also explicit with respect to the modified Reynolds number �+∗ and 

consequently the parameter B of the channel.  

The second region is located between the red and blue dashed curves of the diagram in figure 5, 

and corresponds to the transition flow regime region. 

The dimensionless Chezy’s coefficient � �(⁄  depends on both the variables * B⁄  and �+∗, according to 

the relation (56). For a fixed value of the relative roughness * B⁄ , the dimensionless Chezy’s 

coefficient � �(⁄  increases as the modified Reynolds number �+∗ increases. 

The third zone is located to the right of the diagram, and corresponds to the area of rough 

turbulent flow or hydraulically rough. The dimensionless Chezy’s coefficient � �(⁄  in this area, is 

independent of the parameter �+∗, this indicates that regardless of the kinematic viscosity - of the 

flowing fluid, both the bed slope �	 and the channel dimension B, do not affect the value of the 

Chezy’s coefficient. For a fixed relative roughness * B⁄ , the value of the parameter � �(⁄  remains 

constant up to a lower limit value of the parameter �+∗. For a fixed relative roughness * B⁄ , the value 

of the parameter  � �(⁄  remains constant up to a lower limit value of the parameter �+∗, as indicated 

by the blue dashed curves, therefore, Eq. (56) is written as follows: ��( � %4√2&'(�0.2355
* B⁄ ��																																																																																																																					
58� 
In Fig. 5, the limit curve is shown, separating the transition zone from the rough zone. The curve 

is represented by blue dotted lines and was drawn based on the approach of [37], by equalizing the 

values of � �(⁄  calculated via the tow relations (56) and (58) with a difference of 1.5%. This can be 

expressed as follows: 
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2 ��(3�����	��=+ � 1.015 p 2 ��(3I��=�����=	��=+ 																																																																																						
59� 
So: 

%4√2&'(�0.2355
* B⁄ �� � 1.015 p �%4√2&'(�0.2355
* B⁄ � � 65.3212�+∗m��� 
From where: 

�+∗ � 65.3212
)X0.2355 *BY� �.E�k⁄ % X0.2355 *BY,																																																																																																					
60� 

The curve can be drawn by proceeding as follows: 

1. Calculate the Reynolds number �+∗ by the expression (60) after having set the value of the relative 

roughness	* B⁄ ; 

2. Then, the values of * B⁄  and �+∗ allow to calculate the � �(⁄  by the relationship (56). 

 

Also, according to the relation (60) and through the calculations already made for the establishment of 

the limit curve, we can notice that for the rough turbulent flow regime, the Reynolds number is such 
that: 

�+∗ ? 65.3212
)X0.2355 *BY� �.E�k⁄ % X0.2355 *BY,																																																																																																					
61� 

However, for the transitional flow regime, the Reynolds number is as follows: 

�+∗ o 65.3212
)X0.2355 *BY� �.E�k⁄ % X0.2355 *BY,																																																																																																					
62� 

3.1.1  Practical Example 3 

 

Parabolic channel is defined by the linear dimensions: 7; � 4; � 2.5	m, characterized by an 

absolute roughness * = 2 × 10
−4 

m, kinematic viscosity liquid ν = 10
−6 m� M⁄ , longitudinal slope  �	 	= 2 

×10−4 and  ( = 9,81 m s�⁄ . 

- Calculate the modified Reynolds number �+∗, what is the regime flow? 

- Calculate the Chezy’s resistance coefficient �. 

Solution  

1. According to Eq. (11), the linear dimension B is: 

B � 7;� 4; � 2.5�2.5 � 2.5	mK  

2. The relative roughness: *B � 2 p 10ml2.5 � 8 p 10mk 

3. From the expression (31): 

�+∗ � 32√2S(�	BV
- � 32√2√9.81 p 0.0002 p 2.5V10m# � 7923635.53 



           

VOLUME 19, ISSUE 09, 2025                       https://www.lgjdxcn.asia/                                           01-19 

By relating the values of * B⁄ � 8 p 10mk and �+∗ � 7923635.53 in Figure 5, we have a point on the 

transition zone. So the turbulent flow regime in the channel is transitional. And we can confirm that 

by the inequality (62): �+∗ o 65.3212
)X0.2355 *BY� �.E�k⁄ % X0.2355 *BY, �

65.3212]
0.2355 p 8 p 10mk�� �.E�k⁄ % 
0.2355 p 8 p 10mk�^ 
�+∗ � 7923635.53 o 19877286.47 

4. From the expression (56), the Chezy’s resistance coefficient is calculated as follows: 

��( � %4√2&'(
0.2355 p 8 p 10mk � 65.3212 p 7923635.53m�� � 25.8365 

Or; � � 80.92mE.k s⁄  

From the results of the above exercise, it is clear that the transition region defined by the dashed 
blue curve (see Fig. 4) is drawn with an excellent approximation to that determined by Hager [37]. 

4  Conclusions 

The Chezy roughness coefficient often appears to be the most complete characteristic of 

hydraulic resistance to open flows in river channels comparing with other integral empirical 

characteristics of hydraulic resistance. In this paper, the Chezy’s coefficient has been studied in detail. 

Using the general discharge relationship, the expression of the non-dimensional Chezy’s coefficient � �(⁄  was established for a parabolic channel. The obtained expression clearly showed that � �(⁄  

depends on the relative roughness * B⁄ , the aspect ratio λ= of the water areaand the modified 

Reynolds number �+∗ characterizing the full state of the flow.This in turn depends on the bed slope �	, 

the channel dimension Band the kinematic viscosity ν. All parameters affecting the flow in the 

expression � �(⁄  are represented by the relation (32), unlike the current relations. When the 

dimensionB of the channel is not a given data of the problem, the explicit calculation of the 

dimensionless Chezy’s coefficient � �(⁄  is still possible through the use of the rough model method 

(RMM). � �(⁄  is then expressed as a function of the known parameters of the flow in the rough 

model by relation (48). In this case, the calculation of � �(⁄  requires the discharge >, the bed slope �	, the absolute roughness*, the aspect ratio λ= of the water area and the kinematic viscosity ν. When 

the user does not have the aspect ratio λ= of the water area, the explicit calculation of the Chezy’s 

resistance coefficient � is still possible thanks to the simplified method that was clearly described. 

This method uses the minimum measurable data in practice which are the discharge >, the dimension B of the channel, the bed slope �	, the absolute roughness * and kinematic viscosity ν. This simplified 

method gives very satisfactory results. 

The resulting relationship was presented in dimensionless terms, giving it a general validity 

character. From Eq. (32), curves are drawn in Figs. 2 and 3, its graphical representation shows that 

variation of � �(⁄  as a function of the aspect ratio λ=, by assigning fixed values to the relative 

roughness * B⁄ � 0.00 and * B⁄ � 0.05, with the modified Reynolds number �+∗ increasing from 10
4
 

to 10
8
. These curves also show that the Chezy resistance coefficient increases rapidly below the value 

of 1.0 of the aspect ratio λ= with the increase in the modified Reynolds number and increases slowly 

above this value. 
It’s also clear that when the roughness of the inner walls of the channel is zero, the coefficient of 

resistance takes on higher values than when the roughness is high. This can be explained by the 

dominant effect of the Reynolds number induced by the viscosity ν of the liquid. 
ln order to obtain a minimum cross-section and uniform transverse resistance of the parabolic 

channel, the research was supplemented by a particular study of the coefficient � where λ= � 1.0. 

Then, the Eq. (56), expressing the Chezy’s coefficient �, is derived from the Eq. (32). It is evidently 

applicable in all domains of the turbulent flow corresponding to �+∗ ? 10l and 0.00 \ * B⁄ \
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0.0574. Equation (56) is graphically represented using a semi-logarithmic axis of the coordinate 
system. This graphic shows that the Chezy` s resistance coefficient is not constant and may be 

observed in the rough, smooth, and transitional turbulent domains. This result permitted Chezy's 

formula to be generalized throughout the entire turbulent domain. Thus, a limit curve has been drawn 

separating the transitional flow regime or the rough flow regime. The location of both transition and 

rough zones was confirmed by the limitation of the Reynolds number value, respectively, through the 

inequalities (61) and (62). 
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